Optogenetic sensors and effectors: CHROMus—the Cornell Heart Lung Blood Institute Resource for Optogenetic Mouse Signaling
نویسندگان
چکیده
Significant progress has been made in the last decade in the development of optogenetic effectors and sensors that can be deployed to understand complex biological signaling in mammals at a molecular level, without disrupting the distributed, lineage specific signaling circuits that comprise nuanced physiological responses. A major barrier to the widespread exploitation of these imaging tools, however, is the lack of readily available genetic reagents that can be easily combined to probe complex biological processes. Ideally, one could envision purpose-produced mouse lines expressing optically compatible sensors and effectors, sensor pairs in distinct lineages, or sensor pairs in discrete subcellular compartments, such that they could be crossed to enable in vivo imaging studies of unprecedented scientific power. Such lines could also be combined with mice to determine the alteration in signaling accompanying targeted gene deletion or addition. In order to address this lack, the National Heart Lung and Blood Institute has recently funded an optogenetic resource designed to create optically compatible, combinatorial mouse lines that will advance NHLBI research. Here we review recent advances in optogenetic sensor and effectors and describe the rationale and goals for the establishment of the Cornell/National Heart Lung Blood Resource for Optogenetic Mouse Signaling (CHROMus).
منابع مشابه
A step closer to cardiac optogenetics in vivo.
Imagine having the means to fully control excitation in the heart—to be able to triggerwaves atprecise locationsandwith desired properties and to be able to precisely manipulate such waves, including to selectively overwrite them (that is, to terminate an arrhythmia without brute force); imagine being able to do all this in the intact heart, in vivo, by light; imagine being able to ‘see’ all th...
متن کاملNear-infrared photoactivatable control of Ca signaling and optogenetic immunomodulation
The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed ’Opto-CRAC’) that selectively and remotely controls Ca oscillations and Ca-responsive gene expression to reg...
متن کاملNear-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation
The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed 'Opto-CRAC') that selectively and remotely controls Ca(2+) oscillations and Ca(2+)-responsive gene expressio...
متن کاملSystemic gene transfer enables optogenetic pacing of mouse hearts.
AIMS Optogenetic pacing of the heart has been demonstrated in transgenic animals expressing channelrhodopsin-2 (ChR2). However, for the clinical use of optogenetics to treat cardiac arrhythmias, gene transfer to non-transgenic hearts is required. The aim of this study was to describe a reliable method for gene transfer of ChR2 into a sufficient percentage of cardiomyocytes to overcome the elect...
متن کاملOptogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations.
Ventricular arrhythmias are among the most severe complications of heart disease and can result in sudden cardiac death. Patients at risk currently receive implantable defibrillators that deliver electrical shocks to terminate arrhythmias on demand. However, strong electrical shocks can damage the heart and cause severe pain. Therefore, we have tested optogenetic defibrillation using expression...
متن کامل